3.15.86 \(\int \frac {(c+d x)^{5/2}}{(a+b x)^{5/2}} \, dx\) [1486]

Optimal. Leaf size=128 \[ \frac {5 d^2 \sqrt {a+b x} \sqrt {c+d x}}{b^3}-\frac {10 d (c+d x)^{3/2}}{3 b^2 \sqrt {a+b x}}-\frac {2 (c+d x)^{5/2}}{3 b (a+b x)^{3/2}}+\frac {5 d^{3/2} (b c-a d) \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {a+b x}}{\sqrt {b} \sqrt {c+d x}}\right )}{b^{7/2}} \]

[Out]

-2/3*(d*x+c)^(5/2)/b/(b*x+a)^(3/2)+5*d^(3/2)*(-a*d+b*c)*arctanh(d^(1/2)*(b*x+a)^(1/2)/b^(1/2)/(d*x+c)^(1/2))/b
^(7/2)-10/3*d*(d*x+c)^(3/2)/b^2/(b*x+a)^(1/2)+5*d^2*(b*x+a)^(1/2)*(d*x+c)^(1/2)/b^3

________________________________________________________________________________________

Rubi [A]
time = 0.04, antiderivative size = 128, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.263, Rules used = {49, 52, 65, 223, 212} \begin {gather*} \frac {5 d^{3/2} (b c-a d) \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {a+b x}}{\sqrt {b} \sqrt {c+d x}}\right )}{b^{7/2}}+\frac {5 d^2 \sqrt {a+b x} \sqrt {c+d x}}{b^3}-\frac {10 d (c+d x)^{3/2}}{3 b^2 \sqrt {a+b x}}-\frac {2 (c+d x)^{5/2}}{3 b (a+b x)^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(c + d*x)^(5/2)/(a + b*x)^(5/2),x]

[Out]

(5*d^2*Sqrt[a + b*x]*Sqrt[c + d*x])/b^3 - (10*d*(c + d*x)^(3/2))/(3*b^2*Sqrt[a + b*x]) - (2*(c + d*x)^(5/2))/(
3*b*(a + b*x)^(3/2)) + (5*d^(3/2)*(b*c - a*d)*ArcTanh[(Sqrt[d]*Sqrt[a + b*x])/(Sqrt[b]*Sqrt[c + d*x])])/b^(7/2
)

Rule 49

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^n/(b*(
m + 1))), x] - Dist[d*(n/(b*(m + 1))), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d},
x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && LtQ[m, -1] &&  !(IntegerQ[n] &&  !IntegerQ[m]) &&  !(ILeQ[m + n + 2, 0
] && (FractionQ[m] || GeQ[2*n + m + 1, 0])) && IntLinearQ[a, b, c, d, m, n, x]

Rule 52

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^n/(b*(
m + n + 1))), x] + Dist[n*((b*c - a*d)/(b*(m + n + 1))), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rubi steps

\begin {align*} \int \frac {(c+d x)^{5/2}}{(a+b x)^{5/2}} \, dx &=-\frac {2 (c+d x)^{5/2}}{3 b (a+b x)^{3/2}}+\frac {(5 d) \int \frac {(c+d x)^{3/2}}{(a+b x)^{3/2}} \, dx}{3 b}\\ &=-\frac {10 d (c+d x)^{3/2}}{3 b^2 \sqrt {a+b x}}-\frac {2 (c+d x)^{5/2}}{3 b (a+b x)^{3/2}}+\frac {\left (5 d^2\right ) \int \frac {\sqrt {c+d x}}{\sqrt {a+b x}} \, dx}{b^2}\\ &=\frac {5 d^2 \sqrt {a+b x} \sqrt {c+d x}}{b^3}-\frac {10 d (c+d x)^{3/2}}{3 b^2 \sqrt {a+b x}}-\frac {2 (c+d x)^{5/2}}{3 b (a+b x)^{3/2}}+\frac {\left (5 d^2 (b c-a d)\right ) \int \frac {1}{\sqrt {a+b x} \sqrt {c+d x}} \, dx}{2 b^3}\\ &=\frac {5 d^2 \sqrt {a+b x} \sqrt {c+d x}}{b^3}-\frac {10 d (c+d x)^{3/2}}{3 b^2 \sqrt {a+b x}}-\frac {2 (c+d x)^{5/2}}{3 b (a+b x)^{3/2}}+\frac {\left (5 d^2 (b c-a d)\right ) \text {Subst}\left (\int \frac {1}{\sqrt {c-\frac {a d}{b}+\frac {d x^2}{b}}} \, dx,x,\sqrt {a+b x}\right )}{b^4}\\ &=\frac {5 d^2 \sqrt {a+b x} \sqrt {c+d x}}{b^3}-\frac {10 d (c+d x)^{3/2}}{3 b^2 \sqrt {a+b x}}-\frac {2 (c+d x)^{5/2}}{3 b (a+b x)^{3/2}}+\frac {\left (5 d^2 (b c-a d)\right ) \text {Subst}\left (\int \frac {1}{1-\frac {d x^2}{b}} \, dx,x,\frac {\sqrt {a+b x}}{\sqrt {c+d x}}\right )}{b^4}\\ &=\frac {5 d^2 \sqrt {a+b x} \sqrt {c+d x}}{b^3}-\frac {10 d (c+d x)^{3/2}}{3 b^2 \sqrt {a+b x}}-\frac {2 (c+d x)^{5/2}}{3 b (a+b x)^{3/2}}+\frac {5 d^{3/2} (b c-a d) \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {a+b x}}{\sqrt {b} \sqrt {c+d x}}\right )}{b^{7/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.73, size = 121, normalized size = 0.95 \begin {gather*} \frac {\frac {\sqrt {c+d x} \left (15 a^2 d^2-10 a b d (c-2 d x)+b^2 \left (-2 c^2-14 c d x+3 d^2 x^2\right )\right )}{(a+b x)^{3/2}}+\frac {15 d (-b c+a d) \log \left (\sqrt {a+b x}-\sqrt {\frac {b}{d}} \sqrt {c+d x}\right )}{\sqrt {\frac {b}{d}}}}{3 b^3} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(c + d*x)^(5/2)/(a + b*x)^(5/2),x]

[Out]

((Sqrt[c + d*x]*(15*a^2*d^2 - 10*a*b*d*(c - 2*d*x) + b^2*(-2*c^2 - 14*c*d*x + 3*d^2*x^2)))/(a + b*x)^(3/2) + (
15*d*(-(b*c) + a*d)*Log[Sqrt[a + b*x] - Sqrt[b/d]*Sqrt[c + d*x]])/Sqrt[b/d])/(3*b^3)

________________________________________________________________________________________

Maple [F]
time = 0.06, size = 0, normalized size = 0.00 \[\int \frac {\left (d x +c \right )^{\frac {5}{2}}}{\left (b x +a \right )^{\frac {5}{2}}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x+c)^(5/2)/(b*x+a)^(5/2),x)

[Out]

int((d*x+c)^(5/2)/(b*x+a)^(5/2),x)

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^(5/2)/(b*x+a)^(5/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(a*d-b*c>0)', see `assume?` for
 more detail

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 225 vs. \(2 (100) = 200\).
time = 1.42, size = 475, normalized size = 3.71 \begin {gather*} \left [-\frac {15 \, {\left (a^{2} b c d - a^{3} d^{2} + {\left (b^{3} c d - a b^{2} d^{2}\right )} x^{2} + 2 \, {\left (a b^{2} c d - a^{2} b d^{2}\right )} x\right )} \sqrt {\frac {d}{b}} \log \left (8 \, b^{2} d^{2} x^{2} + b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2} - 4 \, {\left (2 \, b^{2} d x + b^{2} c + a b d\right )} \sqrt {b x + a} \sqrt {d x + c} \sqrt {\frac {d}{b}} + 8 \, {\left (b^{2} c d + a b d^{2}\right )} x\right ) - 4 \, {\left (3 \, b^{2} d^{2} x^{2} - 2 \, b^{2} c^{2} - 10 \, a b c d + 15 \, a^{2} d^{2} - 2 \, {\left (7 \, b^{2} c d - 10 \, a b d^{2}\right )} x\right )} \sqrt {b x + a} \sqrt {d x + c}}{12 \, {\left (b^{5} x^{2} + 2 \, a b^{4} x + a^{2} b^{3}\right )}}, -\frac {15 \, {\left (a^{2} b c d - a^{3} d^{2} + {\left (b^{3} c d - a b^{2} d^{2}\right )} x^{2} + 2 \, {\left (a b^{2} c d - a^{2} b d^{2}\right )} x\right )} \sqrt {-\frac {d}{b}} \arctan \left (\frac {{\left (2 \, b d x + b c + a d\right )} \sqrt {b x + a} \sqrt {d x + c} \sqrt {-\frac {d}{b}}}{2 \, {\left (b d^{2} x^{2} + a c d + {\left (b c d + a d^{2}\right )} x\right )}}\right ) - 2 \, {\left (3 \, b^{2} d^{2} x^{2} - 2 \, b^{2} c^{2} - 10 \, a b c d + 15 \, a^{2} d^{2} - 2 \, {\left (7 \, b^{2} c d - 10 \, a b d^{2}\right )} x\right )} \sqrt {b x + a} \sqrt {d x + c}}{6 \, {\left (b^{5} x^{2} + 2 \, a b^{4} x + a^{2} b^{3}\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^(5/2)/(b*x+a)^(5/2),x, algorithm="fricas")

[Out]

[-1/12*(15*(a^2*b*c*d - a^3*d^2 + (b^3*c*d - a*b^2*d^2)*x^2 + 2*(a*b^2*c*d - a^2*b*d^2)*x)*sqrt(d/b)*log(8*b^2
*d^2*x^2 + b^2*c^2 + 6*a*b*c*d + a^2*d^2 - 4*(2*b^2*d*x + b^2*c + a*b*d)*sqrt(b*x + a)*sqrt(d*x + c)*sqrt(d/b)
 + 8*(b^2*c*d + a*b*d^2)*x) - 4*(3*b^2*d^2*x^2 - 2*b^2*c^2 - 10*a*b*c*d + 15*a^2*d^2 - 2*(7*b^2*c*d - 10*a*b*d
^2)*x)*sqrt(b*x + a)*sqrt(d*x + c))/(b^5*x^2 + 2*a*b^4*x + a^2*b^3), -1/6*(15*(a^2*b*c*d - a^3*d^2 + (b^3*c*d
- a*b^2*d^2)*x^2 + 2*(a*b^2*c*d - a^2*b*d^2)*x)*sqrt(-d/b)*arctan(1/2*(2*b*d*x + b*c + a*d)*sqrt(b*x + a)*sqrt
(d*x + c)*sqrt(-d/b)/(b*d^2*x^2 + a*c*d + (b*c*d + a*d^2)*x)) - 2*(3*b^2*d^2*x^2 - 2*b^2*c^2 - 10*a*b*c*d + 15
*a^2*d^2 - 2*(7*b^2*c*d - 10*a*b*d^2)*x)*sqrt(b*x + a)*sqrt(d*x + c))/(b^5*x^2 + 2*a*b^4*x + a^2*b^3)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (c + d x\right )^{\frac {5}{2}}}{\left (a + b x\right )^{\frac {5}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)**(5/2)/(b*x+a)**(5/2),x)

[Out]

Integral((c + d*x)**(5/2)/(a + b*x)**(5/2), x)

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 650 vs. \(2 (100) = 200\).
time = 1.36, size = 650, normalized size = 5.08 \begin {gather*} \frac {\sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d} \sqrt {b x + a} d^{2} {\left | b \right |}}{b^{5}} - \frac {5 \, {\left (\sqrt {b d} b c d {\left | b \right |} - \sqrt {b d} a d^{2} {\left | b \right |}\right )} \log \left ({\left (\sqrt {b d} \sqrt {b x + a} - \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d}\right )}^{2}\right )}{2 \, b^{5}} - \frac {4 \, {\left (7 \, \sqrt {b d} b^{6} c^{4} d {\left | b \right |} - 28 \, \sqrt {b d} a b^{5} c^{3} d^{2} {\left | b \right |} + 42 \, \sqrt {b d} a^{2} b^{4} c^{2} d^{3} {\left | b \right |} - 28 \, \sqrt {b d} a^{3} b^{3} c d^{4} {\left | b \right |} + 7 \, \sqrt {b d} a^{4} b^{2} d^{5} {\left | b \right |} - 12 \, \sqrt {b d} {\left (\sqrt {b d} \sqrt {b x + a} - \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d}\right )}^{2} b^{4} c^{3} d {\left | b \right |} + 36 \, \sqrt {b d} {\left (\sqrt {b d} \sqrt {b x + a} - \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d}\right )}^{2} a b^{3} c^{2} d^{2} {\left | b \right |} - 36 \, \sqrt {b d} {\left (\sqrt {b d} \sqrt {b x + a} - \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d}\right )}^{2} a^{2} b^{2} c d^{3} {\left | b \right |} + 12 \, \sqrt {b d} {\left (\sqrt {b d} \sqrt {b x + a} - \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d}\right )}^{2} a^{3} b d^{4} {\left | b \right |} + 9 \, \sqrt {b d} {\left (\sqrt {b d} \sqrt {b x + a} - \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d}\right )}^{4} b^{2} c^{2} d {\left | b \right |} - 18 \, \sqrt {b d} {\left (\sqrt {b d} \sqrt {b x + a} - \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d}\right )}^{4} a b c d^{2} {\left | b \right |} + 9 \, \sqrt {b d} {\left (\sqrt {b d} \sqrt {b x + a} - \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d}\right )}^{4} a^{2} d^{3} {\left | b \right |}\right )}}{3 \, {\left (b^{2} c - a b d - {\left (\sqrt {b d} \sqrt {b x + a} - \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d}\right )}^{2}\right )}^{3} b^{4}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^(5/2)/(b*x+a)^(5/2),x, algorithm="giac")

[Out]

sqrt(b^2*c + (b*x + a)*b*d - a*b*d)*sqrt(b*x + a)*d^2*abs(b)/b^5 - 5/2*(sqrt(b*d)*b*c*d*abs(b) - sqrt(b*d)*a*d
^2*abs(b))*log((sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^2)/b^5 - 4/3*(7*sqrt(b*d)*b^6*c
^4*d*abs(b) - 28*sqrt(b*d)*a*b^5*c^3*d^2*abs(b) + 42*sqrt(b*d)*a^2*b^4*c^2*d^3*abs(b) - 28*sqrt(b*d)*a^3*b^3*c
*d^4*abs(b) + 7*sqrt(b*d)*a^4*b^2*d^5*abs(b) - 12*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*
b*d - a*b*d))^2*b^4*c^3*d*abs(b) + 36*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d)
)^2*a*b^3*c^2*d^2*abs(b) - 36*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^2*a^2*
b^2*c*d^3*abs(b) + 12*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^2*a^3*b*d^4*ab
s(b) + 9*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^4*b^2*c^2*d*abs(b) - 18*sqr
t(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^4*a*b*c*d^2*abs(b) + 9*sqrt(b*d)*(sqrt(
b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^4*a^2*d^3*abs(b))/((b^2*c - a*b*d - (sqrt(b*d)*sqrt(
b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^2)^3*b^4)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (c+d\,x\right )}^{5/2}}{{\left (a+b\,x\right )}^{5/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c + d*x)^(5/2)/(a + b*x)^(5/2),x)

[Out]

int((c + d*x)^(5/2)/(a + b*x)^(5/2), x)

________________________________________________________________________________________